
VSDP 2020 manual

C. Jansson et al.

Jan 12, 2022

CONTENTS

I Manual 3
1 Installation 5

1.1 Requirements . 5
1.2 Obtaining VSDP . 5
1.3 Installing VSDP . 6

2 Conic Programming 7
2.1 Primal and dual form . 7
2.2 Condensed form . 8
2.3 Interval arithmetic . 9

3 Linear Programming 11
3.1 First example . 11
3.2 Second example with free variables . 16

4 Second-order Cone Programming 19

5 Semidefinite Programming 25
5.1 First SDP-Example . 25
5.2 Second SDP-Example . 29

6 A Priori Bounds 35

7 Rigorous Certificates of Infeasibility 39
7.1 Theorems of alternatives . 39
7.2 Example: primal infeasible SOCP . 39
7.3 Example: primal infeasible SDP . 42

8 Free Variables 47

II Back matter 51
9 Numerical Results 53

9.1 SDPLIB . 54
9.2 SPARSE_SDP . 56
9.3 DIMACS . 58
9.4 ESC . 60
9.5 RDM . 62

10 Conic solvers 63

i

10.1 CSDP . 63
10.2 GLPK . 63
10.3 LINPROG . 64
10.4 lp_solve . 64
10.5 MOSEK . 64
10.6 SDPA . 65
10.7 SDPT3 . 65
10.8 SeDuMi . 65

Bibliography 67

ii

VSDP 2020 manual

Latest version of this manual https://vsdp.github.io or https://vsdp.github.io/vsdp-2020-manual.pdf.

Abstract

VSDP (Verified SemiDefinite-quadratic-linear Programming) is a software package for the computation of verified
results in conic programming. It supports the constraint cone consisting of the product of semidefinite cones, second-order
cones, and the non-negative orthant. VSDP provides functions for computing rigorous error bounds of the true optimal
value, verified enclosures of epsilon-optimal solutions, and verified certificates of infeasibility. All rounding errors due to
floating-point arithmetic are taken into account.
For theoretical details of the implemented algorithms, we refer to [11, 12, 13, 14].
The software is completely written in MATLAB / GNU Octave and requires the interval toolbox INTLAB. Thus interval
input is supported as well.

The latest version of VSDP provides easy access to the conic solvers:
• CSDP, GLPK, LINPROG, lp_solve, MOSEK, SDPA, SDPT3, and SeDuMi.

Available VSDP versions

• The VSDP versions numbers reflect the release date:
– VSDP 2020

∗ Improvements: solver support and detection, workflow, testing, and documentation.
– VSDP 2012

∗ Improvements: additional support of second-order cones, linear cones, and free variables, vectorized
internal structure. See [9].

– VSDP 2006

CONTENTS 1

https://vsdp.github.io
https://vsdp.github.io/vsdp-2020-manual.pdf
https://www.mathworks.com
https://octave.org
https://www.tuhh.de/ti3/rump/intlab
https://github.com/coin-or/Csdp
https://www.gnu.org/software/glpk
https://www.mathworks.com/help/optim/ug/linprog.html
https://lpsolve.sourceforge.io
https://www.mosek.com
https://sdpa.sourceforge.io
https://github.com/sqlp/sdpt3
https://github.com/sqlp/sedumi
https://github.com/vsdp/vsdp-2020
https://github.com/vsdp/vsdp-2012
https://github.com/vsdp/vsdp-2006

VSDP 2020 manual

∗ Support for large scale semidefinite problems, comprehensible code. See [10].

Contributors

• Christian Jansson (mailto:jansson@tuhh.de)
• Marko Lange (mailto:m.lange@tuhh.de)
• Viktor Härter
• Kai Torben Ohlhus (mailto:k.ohlhus@gmail.com)

2 CONTENTS

https://www.tuhh.de/ti3/jansson/
mailto:jansson@tuhh.de
mailto:m.lange@tuhh.de
mailto:k.ohlhus@gmail.com

Part I

Manual

3

CHAPTER

ONE

INSTALLATION

1.1 Requirements

To run VSDP, the following requirements have to be fulfilled:
• A recent version of GNU Octave or MATLAB has to be installed.
• The interval toolbox INTLAB is required.
• At least one of the following approximate solvers has to be installed:

– CSDP,
– GLPK,
– LINPROG,
– lp_solve,
– MOSEK,
– SDPA,
– SDPT3, or
– SeDuMi.

1.2 Obtaining VSDP

1.2.1 ZIP-File

The most recent version of VSDP and this manual are available at https://vsdp.github.io. There you can download a
ZIP-file vsdp-2020-master.zip and extract it to an arbitrary location.
Legacy versions of VSDP are available from https://www.tuhh.de/ti3/software/.

5

https://www.octave.org
https://www.mathworks.com/products/matlab
https://www.tuhh.de/ti3/rump/intlab
https://github.com/coin-or/Csdp
https://www.gnu.org/software/glpk
https://www.mathworks.com/help/optim/ug/linprog.html
https://lpsolve.sourceforge.io
https://www.mosek.com
https://sdpa.sourceforge.io
https://github.com/sqlp/sdpt3
https://github.com/sqlp/sedumi
https://vsdp.github.io
https://github.com/vsdp/vsdp-2020/archive/refs/heads/master.zip
https://www.tuhh.de/ti3/software/

VSDP 2020 manual

1.2.2 Using git

If you have git installed and about 700 MB of disk space available, you can easily obtain a full bundle of VSDP 2006,
2012, 2020, including some aforementioned approximate solvers, and some benchmark libraries by the command

git clone --recurse-submodules https://github.com/vsdp/vsdp-bundle

In the cloned directory vsdp-bundle/vsdp/2020 you find the latest version of VSDP.

1.3 Installing VSDP

If all requirements are fulfilled, just call from theMATLAB or GNUOctave command prompt inside the VSDP directory

install_vsdp;

and all necessary paths are set and VSDP is fully functional. To test the latter, you can run the small builtin test suite from
MATLAB via

runtests ('testVSDP')

Totals:
5 Passed, 0 Failed, 0 Incomplete.
8.2712 seconds testing time.

or from GNU Octave via

testVSDP;

Test summary

testSINDEX PASSED 0.322136
testSVEC_SMAT PASSED 0.549652
testLP PASSED 3.108967
testSOCP PASSED 2.231160
testSDP PASSED 16.238318

6 Chapter 1. Installation

https://git-scm.com/

CHAPTER

TWO

CONIC PROGRAMMING

2.1 Primal and dual form

VSDP can handle three self dual convex cones, that often occur in practical applications. These are:
• The non-negative orthant:

ℝ𝑛
+ ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑖 ≥ 0, 𝑖 = 1, … , 𝑛}.

• The Lorentz cone (see [1]):

𝕃𝑛 ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝑥1 ≥ ‖𝑥2∶𝑛‖2}.
• The cone of symmetric positive semidefinite matrices:

𝕊𝑛
+ ∶= {𝑋 ∈ ℝ𝑛×𝑛 ∶ 𝑋 = 𝑋𝑇 , 𝑣𝑇 𝑋𝑣 ≥ 0, ∀𝑣 ∈ ℝ𝑛} .

If a quantity is in the interior of one of the above cones, the definitions above must hold with strict inequalities.
By ⟨𝑐, 𝑥⟩ ∶= 𝑐𝑇 𝑥 the usual Euclidean inner product of vectors in ℝ𝑛 is denoted. For symmetric matrices 𝑋, 𝑌 ∈ 𝕊𝑛 the
inner product is given by ⟨𝑋, 𝑌 ⟩ ∶= trace(𝑋𝑌).
Let 𝐴𝑓 and 𝐴𝑙 be a 𝑚 × 𝑛𝑓 and a 𝑚 × 𝑛𝑙 matrix, respectively, and let 𝐴𝑞

𝑖 be 𝑚 × 𝑞𝑖 matrices for 𝑖 = 1, … , 𝑛𝑞. Let
𝑐𝑓 ∈ ℝ𝑛𝑓 , 𝑐𝑙 ∈ ℝ𝑛𝑙 , 𝑐𝑞

𝑖 ∈ ℝ𝑞𝑖 , and 𝑏 ∈ ℝ𝑚. Moreover, let 𝐴𝑠
1,𝑗, … , 𝐴𝑠

𝑚,𝑗, 𝐶𝑠
𝑗 , 𝑋𝑠

𝑗 be symmetric 𝑠𝑗 × 𝑠𝑗 matrices for
𝑗 = 1, … , 𝑛𝑠.
Now we can define the conic semidefinite-quadratic-linear programming problem in primal standard form

minimize ⟨𝑐𝑓 , 𝑥𝑓⟩ + ⟨𝑐𝑙, 𝑥𝑙⟩ + ∑𝑛𝑞
𝑖=1⟨𝑐𝑞

𝑖 , 𝑥𝑞
𝑖 ⟩ + ∑𝑛𝑠

𝑗=1⟨𝐶𝑠
𝑗 , 𝑋𝑠

𝑗 ⟩
subject to 𝐴𝑓𝑥𝑓 + 𝐴𝑙𝑥𝑙 + ∑𝑛𝑞

𝑖=1 𝐴𝑞
𝑖 𝑥𝑞

𝑖 + ∑𝑛𝑠
𝑗=1 𝒜𝑠

𝑗(𝑋𝑠
𝑗) = 𝑏,

𝑥𝑓 ∈ ℝ𝑛𝑓 ,
𝑥𝑙 ∈ ℝ𝑛𝑙

+ ,
𝑥𝑞

𝑖 ∈ 𝕃𝑞𝑖 , 𝑖 = 1, … , 𝑛𝑞,
𝑋𝑠

𝑗 ∈ 𝕊𝑠𝑗
+ , 𝑗 = 1, … , 𝑛𝑠,

where 𝑥𝑓 are “free variables”, 𝑥𝑙 are “non-negative variables”, 𝑥𝑞
𝑖 are “second-order cone (SOCP) variables”, and finally

𝑋𝑠
𝑗 are “positive semidefinite (SDP) variables”. The linear operator

𝒜𝑠
𝑗(𝑋𝑠

𝑗) ∶= ⎛⎜
⎝

⟨𝐴𝑠
1𝑗, 𝑋𝑠

𝑗 ⟩
⋮

⟨𝐴𝑠
𝑚𝑗, 𝑋𝑠

𝑗 ⟩
⎞⎟
⎠

maps the symmetric matrices 𝑋𝑠
𝑗 to ℝ𝑚. The adjoint linear operator is

(𝒜𝑠
𝑗)∗𝑦 ∶=

𝑚
∑
𝑘=1

𝐴𝑠
𝑘𝑗𝑦𝑘.

7

VSDP 2020 manual

The dual problem associated with the primal standard form is

maximize 𝑏𝑇 𝑦
subject to (𝐴𝑓)𝑇 𝑦 + 𝑧𝑓 = 𝑐𝑓 ,

(𝐴𝑙)𝑇 𝑦 + 𝑧𝑙 = 𝑐𝑙,
(𝐴𝑞

𝑖)𝑇 𝑦 + 𝑧𝑞
𝑖 = 𝑐𝑞

𝑖 ,
(𝒜𝑠

𝑗)∗𝑦 + 𝑍𝑠
𝑗 = 𝐶𝑠

𝑗 ,

where 𝑧𝑓 ∈ {0}𝑛𝑓 , 𝑧𝑙 ∈ ℝ𝑛𝑙
+ , 𝑧𝑞

𝑖 ∈ 𝕃𝑞𝑖 , 𝑖 = 1, … , 𝑛𝑞, and 𝑍𝑠
𝑗 ∈ 𝕊𝑠𝑗

+ , 𝑗 = 1, … , 𝑛𝑠.
The objective functions and equality constraints of the primal and dual problem are linear. Thus conic programming can
be seen as an extension of linear programming with additional conic constraints.
By definition the vector 𝑥𝑓 contains all unconstrained or free variables, whereas all other variables are bounded by conic
constraints. In several applications some solvers (for example SDPA or CSDP) require that free variables are converted
into the difference of non-negative variables. Besides themajor disadvantage that this transformation is numerical unstable,
it also increases the number of variables of the particular problems. In VSDP free variables can be handled in a numerical
stable manner.

2.2 Condensed form

Occasionally, it is useful to represent the conic programming problem in a more compact form by using the symmetric
vectorization operator. This operator maps a symmetric matrix 𝑋 ∈ 𝕊𝑛 to an 𝑛(𝑛 + 1)/2-dimensional vector

𝑠𝑣𝑒𝑐(𝑋, 𝛼) ∶= (𝑋11 𝛼𝑋12 𝑋22 𝛼𝑋13 ⋯ 𝑋𝑛𝑛)𝑇 ,

where 𝛼 is a scaling factor for the off diagonal elements. The inverse operation is denoted by 𝑠𝑚𝑎𝑡 such that
𝑠𝑚𝑎𝑡(𝑠𝑣𝑒𝑐(𝑋, 𝛼), 1/𝛼) = 𝑋. For a vectorized quantity 𝑥, scaled by 𝛼, we often write 𝑥 ∈ 𝕊𝑛 as abbreviation for
𝑠𝑚𝑎𝑡(𝑥, 1/𝛼) ∈ 𝕊𝑛.
By using 𝑠𝑣𝑒𝑐 it is possible to map each symmetric matrix to a vector quantity. Additionally, by using the scaling factor
𝛼 = 1 for all 𝐴𝑠

𝑘𝑗, 𝐶𝑠
𝑗 , and 𝑍𝑠

𝑗 and the scaling factor 𝛼 = 2 for all 𝑋𝑠
𝑗 , the inner product of symmetric matrices reduces

to a simple scalar product of two vectors. Thus all cones can be treated equally.
The condensed quantities 𝑐, 𝑥, and 𝑧 are 𝑛 × 1-vectors:

𝑐 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑐𝑓

𝑐𝑙

𝑐𝑞
1
⋮

𝑐𝑞
𝑛𝑞

𝑠𝑣𝑒𝑐(𝐶𝑠
1 , 1)

⋮
𝑠𝑣𝑒𝑐(𝐶𝑠

𝑛𝑠,1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑥 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥𝑓

𝑥𝑙

𝑥𝑞
1
⋮

𝑥𝑞
𝑛𝑞

𝑠𝑣𝑒𝑐(𝑋𝑠
1, 2)

⋮
𝑠𝑣𝑒𝑐(𝑋𝑠

𝑛𝑠,2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝑧 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑧𝑓

𝑧𝑙

𝑧𝑞
1
⋮

𝑧𝑞
𝑛𝑞

𝑠𝑣𝑒𝑐(𝑍𝑠
1 , 1)

⋮
𝑠𝑣𝑒𝑐(𝑍𝑠

𝑛𝑠
, 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where 𝑛 = 𝑛𝑓 + 𝑛𝑙 + ∑𝑛𝑞
𝑖=1 𝑞𝑖 + ∑𝑛𝑠

𝑗=1 𝑠𝑗(𝑠𝑗 + 1)/2. 𝐴𝑇 becomes an 𝑛 × 𝑚 matrix

𝐴𝑇 ∶=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐴𝑓

𝐴𝑙

𝐴𝑞
1
⋮

𝐴𝑞
𝑛𝑞

𝑠𝑣𝑒𝑐(𝐴𝑠
11, 1) ⋯ 𝑠𝑣𝑒𝑐(𝐴𝑠

1𝑚, 1)
⋮ ⋮

𝑠𝑣𝑒𝑐(𝐴𝑠
𝑛𝑠1, 1) ⋯ 𝑠𝑣𝑒𝑐(𝐴𝑠

𝑛𝑠𝑚, 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

8 Chapter 2. Conic Programming

VSDP 2020 manual

Let the constraint cone 𝐾 and its dual cone 𝐾∗ be

𝒦 ∶= ℝ𝑛𝑓 × ℝ𝑛𝑙
+ × 𝕃𝑞1 × … × 𝕃𝑞𝑛𝑞 × 𝕊𝑠1

+ × … × 𝕊𝑠𝑛𝑠
+ ,

𝒦∗ ∶= {0}𝑛𝑓 × ℝ𝑛𝑙
+ × 𝕃𝑞1 × … × 𝕃𝑞𝑛𝑞 × 𝕊𝑠1

+ × … × 𝕊𝑠𝑛𝑠
+ .

With these abbreviations we obtain the following block form of the conic problem:

minimize 𝑐𝑇 𝑥,
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝒦,

with optimal value ̂𝑓𝑝 and the corresponding dual problem

maximize 𝑏𝑇 𝑦,
subject to 𝑧 = 𝑐 − (𝐴)𝑇 𝑦 ∈ 𝒦∗,

with optimal value ̂𝑓𝑑. In VSDP each conic problem is fully described by the four variables (A, b, c, K). The first
two quantities represent the affine constraints𝐴𝑥 = 𝑏. The third is the primal objective vector c, and the last describes the
underlying cone. The cone K is a structure with four fields: K.f, K.l, K.q, and K.s. The field K.f stores the number
of free variables 𝑛𝑓 , the field K.l stores the number of non-negative variables 𝑛𝑙, the field K.q stores the dimensions
𝑞1, … , 𝑞𝑛𝑞

of the second order cones, and similarly K.s stores the dimensions 𝑠1, … , 𝑠𝑛𝑠
of the semidefinite cones. If a

component of K is empty, then it is assumed that the corresponding cone does not occur.

It is well known that for linear programming problems strong duality ̂𝑓𝑝 = ̂𝑓𝑑 holds without any constraint qualifications.
General conic programs satisfy only the weak duality condition ̂𝑓𝑑 ≤ ̂𝑓𝑝. Strong duality requires additional constraint
qualifications, such as Slater’s constraint qualifications (see [24] and [28]).

Strong Duality Theorem
• If the primal problem is strictly feasible (i.e. there exists a primal feasible point 𝑥 in the interior of 𝐾)
and ̂𝑓𝑝 is finite, then ̂𝑓𝑝 = ̂𝑓𝑑 and the dual supremum is attained.

• If the dual problem is strictly feasible (i.e. there exists some 𝑦 such that 𝑧 = 𝑐−(𝐴)𝑇 𝑦 is in the interior
of 𝐾∗) and ̂𝑓𝑑 is finite, then ̂𝑓𝑑 = ̂𝑓𝑝, and the primal infimum is attained.

In general, the primal or dual problem formulation may have optimal solutions while its respective dual problem is infea-
sible, or the duality gap may be positive at optimality.
Duality theory is central to the study of optimization. Firstly, algorithms are frequently based on duality (like primal-dual
interior-point methods), secondly, they enable one to check whether or not a given feasible point is optimal, and thirdly,
it allows one to compute verified results efficiently.

2.3 Interval arithmetic

For the usage of VSDP a knowledge of interval arithmetic [23] is not required, but some error bound outputs are intervals.
Therefore we give a very brief introduction to interval formats. An interval vector or an interval matrix is defined as a set
of vectors or matrices that vary between a lower and an upper vector or matrix, respectively. In other words, these are
quantities with interval components.
In INTLAB [22] these interval quantities can be initialized with the infsup-function.

format infsup short
x = infsup (-1, 2)

2.3. Interval arithmetic 9

VSDP 2020 manual

intval x =
[-1.0000, 2.0000]

Equivalently, these quantities can be defined by a midpoint-radius representation, using the midrad-function.

format midrad short
y = midrad (0.5, 1.5)
format infsup short
y

intval y =
< 0.5000, 1.5000>
intval y =
[-1.0000, 2.0000]

10 Chapter 2. Conic Programming

CHAPTER

THREE

LINEAR PROGRAMMING

In this section we describe how linear programming problems can be solved with VSDP. In particular, two linear programs
are considered in detail.

3.1 First example

Consider the linear program in primal standard form

minimize 2𝑥2 + 3𝑥4 + 5𝑥5,
subject to (−1 2 0 1 1

0 0 −1 0 2) 𝑥 = (2
3) ,

𝑥 ∈ ℝ5
+,

with its corresponding dual problem

maximize 2𝑦1 + 3𝑦2,

subject to 𝑧 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
2
0
3
5

⎞⎟⎟⎟⎟⎟⎟
⎠

−
⎛⎜⎜⎜⎜⎜⎜
⎝

−1 0
2 0
0 −1
1 0
1 2

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑦 ∈ ℝ5
+.

The unique exact optimal solution is given by 𝑥∗ = (0, 0.25, 0, 0, 1.5)𝑇 , 𝑦∗ = (1, 2)𝑇 with ̂𝑓𝑝 = ̂𝑓𝑑 = 8.
The input data of the problem in VSDP are:

A = [-1, 2, 0, 1, 1;
0, 0, -1, 0, 2];

b = [2; 3];
c = [0; 2; 0; 3; 5];
K.l = 5;

To create a VSDP object of the linear program data above, we call the VSDP class constructor and do not suppress the
output by terminating the statement with a semicolon ;.

obj = vsdp (A, b, c, K)

obj =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)

(continues on next page)

11

VSDP 2020 manual

(continued from previous page)

n = 5 variables
m = 2 constraints

and cones:

K.l = 5

Compute an approximate solution:

'obj = obj.solve()'

Detailed information: 'obj.info()'

The output contains all relevant information about the conic problem and includes the command obj.solve to proceed.
By calling the obj.solve method on the VSDP object obj, we can compute an approximate solution x, y, and z,
for example by using SDPT3. When calling obj.solve without any arguments, the user is asked to choose one of the
supported solvers.

obj.solve ('sdpt3');

num. of constraints = 2
dim. of linear var = 5

SDPT3: Infeasible path-following algorithms

version predcorr gam expon scale_data

NT 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime

0|0.000|0.000|6.3e+00|2.6e+00|5.0e+02| 1.000000e+02 0.000000e+00| 0:0:00| chol ␣
↪1 1
1|1.000|0.867|9.5e-07|3.7e-01|8.7e+01| 4.535853e+01 2.191628e+00| 0:0:00| chol ␣
↪1 1
2|1.000|1.000|1.9e-06|3.1e-03|1.1e+01| 1.670044e+01 5.453562e+00| 0:0:00| chol ␣
↪1 1
3|0.928|1.000|1.6e-07|3.1e-04|1.1e+00| 8.503754e+00 7.407909e+00| 0:0:00| chol ␣
↪1 1
4|1.000|0.591|1.0e-07|1.5e-04|7.9e-01| 8.626424e+00 7.841794e+00| 0:0:00| chol ␣
↪1 1
5|0.971|0.984|3.0e-09|5.4e-06|2.2e-02| 8.015560e+00 7.993623e+00| 0:0:00| chol ␣
↪1 1
6|0.988|0.988|7.1e-10|3.7e-07|2.6e-04| 8.000185e+00 7.999926e+00| 0:0:00| chol ␣
↪1 1
7|0.989|0.989|1.1e-10|4.3e-09|2.9e-06| 8.000002e+00 7.999999e+00| 0:0:00| chol ␣
↪1 1
8|0.997|1.000|9.4e-13|2.2e-11|3.9e-08| 8.000000e+00 8.000000e+00| 0:0:00|
stop: max(relative gap, infeasibilities) < 1.00e-08

number of iterations = 8
primal objective value = 8.00000003e+00
dual objective value = 7.99999999e+00

(continues on next page)

12 Chapter 3. Linear Programming

VSDP 2020 manual

(continued from previous page)

gap := trace(XZ) = 3.88e-08
relative gap = 2.28e-09
actual relative gap = 2.27e-09
rel. primal infeas (scaled problem) = 9.39e-13
rel. dual " " " = 2.19e-11
rel. primal infeas (unscaled problem) = 0.00e+00
rel. dual " " " = 0.00e+00
norm(X), norm(y), norm(Z) = 1.5e+00, 2.2e+00, 3.0e+00
norm(A), norm(b), norm(C) = 4.5e+00, 4.6e+00, 7.2e+00
Total CPU time (secs) = 0.21
CPU time per iteration = 0.03
termination code = 0
DIMACS: 1.1e-12 0.0e+00 2.6e-11 0.0e+00 2.3e-09 2.3e-09

The solver output is often quite verbose. Especially for large problems it is recommended to display the solver progress.
To suppress solver messages, the following option can be set:

obj.options.VERBOSE_OUTPUT = false;

To permanently assign an approximate solver to a VSDP object, use the following option:

obj.options.SOLVER = 'sdpt3';

By simply typing the VSDP object’s name, the user gets a short summary of the solution state.

obj

obj =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 5 variables
m = 2 constraints

and cones:

K.l = 5

obj.solutions.approximate:

Solver 'sdpt3': Normal termination, 0.3 seconds.

c'*x = 8.000000025993693e+00
b'*y = 7.999999987362061e+00

Compute a rigorous lower bound:

'obj = obj.rigorous_lower_bound()'

Compute a rigorous upper bound:

'obj = obj.rigorous_upper_bound()'

(continues on next page)

3.1. First example 13

VSDP 2020 manual

(continued from previous page)

Detailed information: 'obj.info()'

On success, one can obtain the approximate solutions for further processing.

format short
x = obj.solutions.approximate.x
y = obj.solutions.approximate.y

x =
0.0000000092324
0.2500000014452
0.0000000040905
0.0000000042923
1.5000000020453

y =
1.00000
2.00000

The approximate solution is close to the optimal solution 𝑥∗ = (0, 0.25, 0, 0, 1.5)𝑇 , 𝑦∗ = (1, 2)𝑇 .

With this approximate solution, a rigorous lower bound fL of the primal optimal value ̂𝑓𝑝 = 8 can be computed by
calling:

format long
obj.rigorous_lower_bound ();
fL = obj.solutions.rigorous_lower_bound.f_objective(1)

fL = 7.999999987362061

Similarly, a rigorous upper bound fU of the dual optimal value ̂𝑓𝑑 can be computed by calling:

obj.rigorous_upper_bound ();
fU = obj.solutions.rigorous_upper_bound.f_objective(2)

fU = 8.000000025997927

The summary output of the VSDP object contains the information about the rigorous error bounds, as well. It can be
extracted if necessary.

obj

obj =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 5 variables
m = 2 constraints

and cones:

(continues on next page)

14 Chapter 3. Linear Programming

VSDP 2020 manual

(continued from previous page)

K.l = 5

obj.solutions.approximate:

Solver 'sdpt3': Normal termination, 0.3 seconds.

c'*x = 8.000000025993693e+00
b'*y = 7.999999987362061e+00

obj.solutions.rigorous_lower_bound:

Normal termination, 0.0 seconds, 0 iterations.

fL = 7.999999987362061e+00

obj.solutions.rigorous_upper_bound:

Normal termination, 0.0 seconds, 0 iterations.

fU = 8.000000025997927e+00

Detailed information: 'obj.info()'

Despite the rigorous lower bound fL, the solution object obj.solutions.rigorous_lower_bound contains
more information:

1. Y is a rigorous interval enclosure of a dual feasible near optimal solution and
2. Zl a lower bound of each cone in 𝑧 = 𝑐 − 𝐴∗𝑦. For a linear program this is a lower bound on each component of

z.

format short
format infsup
Y = obj.solutions.rigorous_lower_bound.y

Zl = obj.solutions.rigorous_lower_bound.z

intval Y =
[0.9999, 1.0000]
[2.0000, 2.0001]
Zl =

0.9999999873621
0.0000000252759
2.0000000042126
2.0000000126379
0.0000000042126

Since Zl is positive, the dual problem is strictly feasible, and the rigorous interval vector Y contains a dual interior solution.
Here only some significant digits of this interval vector are displayed. The upper and lower bounds of the interval Y can
be obtained by using the sup and inf routines of INTLAB. For more information about the intval data type see
[22].
The information returned by vsdp.rigorous_upper_bound is similar:

3.1. First example 15

VSDP 2020 manual

1. X is a rigorous interval enclosure of a primal feasible near optimal solution and
2. Xl a lower bound of each cone in X. Again, for a linear program this is a lower bound on each component of X.

X = obj.solutions.rigorous_upper_bound.x
Xl = obj.solutions.rigorous_upper_bound.z

intval X =
[0.0000, 0.0001]
[0.2500, 0.2501]
[0.0000, 0.0001]
[0.0000, 0.0001]
[1.5000, 1.5001]
Xl =

0.0000000092324
0.2500000014474
0.0000000040905
0.0000000042923
1.5000000020452

Since Xl is a positive vector, X is contained in the positive orthant and the primal problem is strictly feasible.
Summarizing, we have obtained a primal-dual interval solution pair with an accuracy measured by

𝜇(𝑎, 𝑏) = 𝑎 − 𝑏
max{1.0, (|𝑎| + |𝑏|)/2} ,

see [10].

format shorte
mu = (fU - fL) / max (1, (abs (fU) + abs(fL)) / 2)

mu = 4.8295e-09

This means, that the computed rigorous upper and lower error bounds have an accuracy of eight to nine decimal digits.

3.2 Second example with free variables

How a linear program with free variables can be rigorously solved by VSDP is demonstrated by the following example
with one free variable 𝑥3:

minimize (1 1 −0.5) 𝑥,
subject to (1 −1 2

1 1 −1) 𝑥 = (0.5
1)

𝑥1, 𝑥2 ∈ ℝ2
+,

𝑥3 ∈ ℝ.

The optimal solution pair of this problem is 𝑥∗ = (5
6 , 0, − 1

6)𝑇 , 𝑦∗ = (1
6 , 5

6)𝑇 with ̂𝑓𝑝 = ̂𝑓𝑑 = 11
12 ≈ 9.166 ….

When entering a conic problem the order of the variables is important:
1. free variables,
2. non-negative variables,
3. second-order cone variables,

16 Chapter 3. Linear Programming

VSDP 2020 manual

4. semidefinite variables.
All involved VSDP quantities, the constraint matrix A, the primal objective c, the primal solution x, as well as z, follow
this order. In the second linear programming example, the free variable is 𝑥3 and the non-negative variables are 𝑥1 and
𝑥2, respectively. Second-order cone variables and semidefinite variables are not present.
Therefore, the problem data are:

K.f = 1; % number of free variables
K.l = 2; % number of non-negative variables
A = [2, 1, -1; % first column corresponds to free variable x3

-1, 1, 1]; % second and third to bounded x1, x2
c = [-0.5; 1; 1]; % the same applies to c
b = [0.5; 1];

The whole VSDP computation can be done in a few lines of code:

obj = vsdp (A, b, c, K);
obj.options.VERBOSE_OUTPUT = false;
obj.solve ('sdpt3') ...

.rigorous_lower_bound () ...

.rigorous_upper_bound ();

Yielding

obj

obj =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 3 variables
m = 2 constraints

and cones:

K.f = 1
K.l = 2

obj.solutions.approximate:

Solver 'sdpt3': Normal termination, 0.3 seconds.

c'*x = 9.166666669227741e-01
b'*y = 9.166666662221519e-01

obj.solutions.rigorous_lower_bound:

Normal termination, 0.0 seconds, 0 iterations.

fL = 9.166666662221495e-01

obj.solutions.rigorous_upper_bound:

Normal termination, 0.0 seconds, 0 iterations.

(continues on next page)

3.2. Second example with free variables 17

VSDP 2020 manual

(continued from previous page)

fU = 9.166666669227844e-01

Detailed information: 'obj.info()'

18 Chapter 3. Linear Programming

CHAPTER

FOUR

SECOND-ORDER CONE PROGRAMMING

Consider a least squares problem from [7]:

‖𝑏𝑑𝑎𝑡𝑎 − 𝐴𝑑𝑎𝑡𝑎 ̂𝑦‖2 = min
𝑦3∶5∈ℝ3

‖𝑏𝑑𝑎𝑡𝑎 − 𝐴𝑑𝑎𝑡𝑎 𝑦3∶5‖2

with a matrix of rank two

A_data = [3 1 4 ;
0 1 1 ;
-2 5 3 ;
1 4 5];

and right-hand side

b_data = [0 ;
2 ;
1 ;
3];

This problem can be formulated as second-order cone program in dual standard form:

maximize −𝑦1 − 𝑦2,
subject to 𝑦1 ≥ ‖(𝑏𝑑𝑎𝑡𝑎 − 𝐴𝑑𝑎𝑡𝑎 𝑦3∶5)‖2,

𝑦2 ≥ ∥(1
𝑦3∶5

)∥
2

,
𝑦 ∈ ℝ5.

The two inequality constraints can be written as second-order cone vectors

(𝑦1
𝑏𝑑𝑎𝑡𝑎 − 𝐴𝑑𝑎𝑡𝑎 𝑦3∶5

) ∈ 𝕃5 and ⎛⎜
⎝

𝑦2
1

𝑦3∶5

⎞⎟
⎠

∈ 𝕃5.

Both vectors can be expressed as matrix-vector product of 𝑦

(0
𝑏𝑑𝑎𝑡𝑎

)
⏟

=𝑐𝑞
1

− (−1 0 0 0 0
0 0 (𝐴𝑑𝑎𝑡𝑎))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=(𝐴𝑞

1)𝑇

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

⎞⎟⎟⎟⎟⎟⎟
⎠

∈ 𝕃5

19

VSDP 2020 manual

and

⎛⎜⎜⎜⎜⎜⎜
⎝

0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠⏟

=𝑐𝑞
2

−
⎛⎜⎜⎜⎜⎜⎜
⎝

0 −1 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=(𝐴𝑞
2)𝑇

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑦1
𝑦2
𝑦3
𝑦4
𝑦5

⎞⎟⎟⎟⎟⎟⎟
⎠

∈ 𝕃5.

With these formulations, the dual problem takes the form

maximize (−1 −1 0 0 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑏𝑇

𝑦,

subject to 𝑧 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
𝑏𝑑𝑎𝑡𝑎

0
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠⏟

=𝑐

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 0 0 0 0
0 0 (𝐴𝑑𝑎𝑡𝑎)
0 −1 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐴𝑇

𝑦 ∈ 𝐾∗,

𝑦 ∈ ℝ5.

where 𝐾∗ = 𝕃5 × 𝕃5.
We want to solve this problem with SeDuMi and enter the problem data of the primal problem.

At = zeros (10, 5);
At(1,1) = -1;
At(2:5, 3:5) = A_data;
At(6,2) = -1;
At(8:10, 3:5) = -eye(3);
b = [-1 -1 0 0 0]';
c = [0 b_data' 0 0 0 0 0]';

Apart from the data (At,b,c), the vector q = [5;5] of the second-order cone block sizes must be forwarded to the
structure K:

K.q = [5; 5];

Now we compute approximate solutions by using obj.solve and then rigorous error bounds by using obj.
rigorous_lower_bound and obj.rigorous_upper_bound:

obj = vsdp (At, b, c, K);
obj.options.VERBOSE_OUTPUT = false;
obj.solve('sedumi') ...

.rigorous_lower_bound() ...

.rigorous_upper_bound();

Finally, we get an overview about all the performed computations:

obj

obj =
VSDP conic programming problem with dimensions:

(continues on next page)

20 Chapter 4. Second-order Cone Programming

VSDP 2020 manual

(continued from previous page)

[n,m] = size(obj.At)
n = 10 variables
m = 5 constraints

and cones:

K.q = [5, 5]

obj.solutions.approximate:

Solver 'sedumi': Normal termination, 0.2 seconds.

c'*x = -2.592163303832843e+00
b'*y = -2.592163302997335e+00

obj.solutions.rigorous_lower_bound:

Solver 'sedumi': Normal termination, 0.2 seconds, 1 iterations.

fL = -2.592163303541427e+00

obj.solutions.rigorous_upper_bound:

Solver 'sedumi': Normal termination, 0.3 seconds, 1 iterations.

fU = -2.592163296674677e+00

Detailed information: 'obj.info()'

Now we analyze the resulting regularized least squares solution

y_SOCP = obj.solutions.approximate.y(3:5)

y_SOCP =
-0.022817
0.218532
0.195715

and compare it to a naive least squares solution y_LS, which takes extreme values in this example

y_LS = A_data \ b_data

y_LS =
8.0353e+14
8.0353e+14

-8.0353e+14

Displaying the norms of the results side-by-side reveals, that y_SOCP is better suited for numerical computations.

21

VSDP 2020 manual

[norm(y_SOCP) norm(y_LS);
norm(b_data - A_data * y_SOCP) norm(b_data - A_data * y_LS)]

ans =
2.9425e-01 1.3918e+15
2.2979e+00 2.5125e+00

Conic programming allows tomix constraints of different types. For instance, one can add the linear inequality∑5
𝑖=1 𝑦𝑖 ≤

3.5 to the previous dual problem. We extend the input data as follows:

At = [1 1 1 1 1; At];
c = [3.5 ; c];
K.l = 1;

Remember that the order of the cone variables matters for At and c.

obj = vsdp (At, b, c, K);
obj.options.VERBOSE_OUTPUT = false;
obj.solve('sedumi') ...

.rigorous_lower_bound() ...

.rigorous_upper_bound();

Finally, one obtains:

obj

obj =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 11 variables
m = 5 constraints

and cones:

K.l = 1
K.q = [5, 5]

obj.solutions.approximate:

Solver 'sedumi': Normal termination, 0.3 seconds.

c'*x = -2.592163292348387e+00
b'*y = -2.592163288374707e+00

obj.solutions.rigorous_lower_bound:

Solver 'sedumi': Normal termination, 0.3 seconds, 1 iterations.

fL = -2.592163308023824e+00

obj.solutions.rigorous_upper_bound:

(continues on next page)

22 Chapter 4. Second-order Cone Programming

VSDP 2020 manual

(continued from previous page)

Normal termination, 0.0 seconds, 0 iterations.

fU = -2.592163292358022e+00

Detailed information: 'obj.info()'

23

VSDP 2020 manual

24 Chapter 4. Second-order Cone Programming

CHAPTER

FIVE

SEMIDEFINITE PROGRAMMING

The primal standard form of a conic program with 𝑛𝑠 symmetric positive semidefinite cones

𝕊𝑠𝑗
+ ∶= {𝑋 ∈ ℝ𝑠𝑗×𝑠𝑗 ∶ 𝑋 = 𝑋𝑇 , 𝑣𝑇 𝑋𝑣 ≥ 0, ∀𝑣 ∈ ℝ𝑠𝑗} , 𝑗 = 1, … , 𝑛𝑠.

is

minimize ∑𝑛𝑠
𝑗=1⟨𝐶𝑗, 𝑋𝑗⟩

subject to ∑𝑛𝑠
𝑗=1⟨𝐴𝑖𝑗, 𝑋𝑗⟩ = 𝑏𝑖, 𝑖 = 1, … , 𝑚,

𝑋𝑗 ∈ 𝕊𝑠𝑗
+ , 𝑗 = 1, … , 𝑛𝑠,

with symmetric 𝑠𝑗 × 𝑠𝑗 matrices 𝐴𝑖𝑗 and 𝐶𝑗. The dual problem form is

maximize 𝑏𝑇 𝑦
subject to 𝑍𝑗 ∶= 𝐶𝑗 − ∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖𝑗 ∈ 𝕊𝑠𝑗
+ , 𝑗 = 1, … , 𝑛𝑠.

5.1 First SDP-Example

We consider an example from the CSDP User’s Guide [4]:

minimize ∑3
𝑗=1⟨𝐶𝑗, 𝑋𝑗⟩

subject to ∑3
𝑗=1⟨𝐴𝑖𝑗, 𝑋𝑗⟩ = 𝑏𝑖, 𝑖 = 1, 2,

𝑋1 ∈ 𝕊2
+,

𝑋2 ∈ 𝕊3
+,

𝑋3 ∈ 𝕊2
+,

where 𝑏 = (1
2),

𝐶𝑠1
1 = (−2 −1

−1 −2) , 𝐶𝑠2
2 = ⎛⎜

⎝

−3 0 −1
0 −2 0

−1 0 −3
⎞⎟
⎠

, 𝐶𝑠3
3 = (0 0

0 0) ,

𝐴𝑠1
1,1 = (3 1

1 3) , 𝐴𝑠2
1,2 = ⎛⎜

⎝

0 0 0
0 0 0
0 0 0

⎞⎟
⎠

, 𝐴𝑠3
1,3 = (1 0

0 0) ,

𝐴𝑠1
2,1 = (0 0

0 0) , 𝐴𝑠2
2,2 = ⎛⎜

⎝

3 0 1
0 4 0
1 0 5

⎞⎟
⎠

, 𝐴𝑠3
2,3 = (0 0

0 1) .

In the vectorized format the corresponding coefficient matrix At and the primal objective vector c are

25

VSDP 2020 manual

At{1} = [3; 1;
1; 3;
0; 0; 0;
0; 0; 0;
0; 0; 0;
1; 0;
0; 0];

At{2} = [0; 0;
0; 0;
3; 0; 1;
0; 4; 0;
1; 0; 5;
0; 0;
0; 1];

At = [At{:}];

b = [1;
2];

c = [-2; -1;
-1; -2;
-3; 0; -1;
0; -2; 0;

-1; 0; -3;
0; 0;
0; 0];

And the cone structure K for this problem is

K.s = [2 3 2];
obj = vsdp (At, b, c, K);

Before one starts with approximately solving the SDP, one can check for diagonal only SDP cones and convert them to
linear cones. This is beneficial for two reasons: Firstly, storing linear cones requires less memory, and secondly, VSDP
does not have to compute eigenvalues for the cone verification.

obj = obj.analyze (true);

warning: analyze: K.s(3) seems to only have diagonal elements.
warning: called from

analyze>pattern1 at line 72 column 7
analyze at line 50 column 5

--> Convert it to LP block.

When calling vsdp.analyze with the argument true, all possible optimization are applied. Note that in the original
example by Borchers [4] the last cone was already marked as diagonal only. This was only changed for the sake of
demonstration.
Now we compute approximate solutions by using vsdp.solve and then rigorous error bounds by using vsdp.
rigorous_lower_bound and vsdp.rigorous_upper_bound:

obj.options.VERBOSE_OUTPUT = false;
obj.solve('sdpt3') ...

.rigorous_lower_bound() ...

.rigorous_upper_bound()

26 Chapter 5. Semidefinite Programming

VSDP 2020 manual

ans =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 11 variables
m = 2 constraints

and cones:

K.l = 2
K.s = [2, 3]

obj.solutions.approximate:

Solver 'sdpt3': Normal termination, 0.5 seconds.

c'*x = -2.749999966056186e+00
b'*y = -2.750000014595577e+00

obj.solutions.rigorous_lower_bound:

Normal termination, 0.0 seconds, 0 iterations.

fL = -2.750000014595577e+00

obj.solutions.rigorous_upper_bound:

Normal termination, 0.0 seconds, 0 iterations.

fU = -2.749999966061941e+00

Detailed information: 'obj.info()'

Those approximations match the true primal and dual optimal objective function value ̂𝑓𝑑 = ̂𝑓𝑑 = −2.75.
To compare the approximate solution X, y, and Z with the unique solution �̂�, ̂𝑦, and ̂𝑍 from [4], the vectorized solution
quantities x and z have to be transformed back to matrices by using vsdp.smat and the appropriate scaling factor
alpha:

�̂� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.125 0.125
0.125 0.125

2/3 0 0
0 0 0
0 0 0

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

format short
alpha = 1/2; % Invert scaling by "vdsp.svec"

x = vsdp_indexable (full (obj.solutions.approximate.x), obj);
X1 = vsdp.smat ([], x.s(1), alpha) % SDP Block 1
X2 = vsdp.smat ([], x.s(2), alpha) % SDP Block 2
X3 = x.l % LP Block

5.1. First SDP-Example 27

VSDP 2020 manual

X1 =
0.12500 0.12500
0.12500 0.12500

X2 =
0.66668 0.00000 -0.00002
0.00000 0.00000 0.00000

-0.00002 0.00000 0.00000

X3 =
0.0000000090495
0.0000000067871

̂𝑦 = (−0.75
−1) ,

y = obj.solutions.approximate.y

y =
-0.75000
-1.00000

̂𝑍 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.25 −0.25
−0.25 0.25

0 0 0
0 2 0
0 0 2

0.75
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

alpha = 1; % Invert scaling by "vdsp.svec"

z = vsdp_indexable (full (obj.solutions.approximate.z), obj);
Z1 = vsdp.smat ([], z.s(1), alpha) % SDP Block 1
Z2 = vsdp.smat ([], z.s(2), alpha) % SDP Block 2
Z3 = x.l % LP Block

Z1 =
0.25000 -0.25000

-0.25000 0.25000

Z2 =
0.00000 0.00000 0.00000
0.00000 2.00000 0.00000
0.00000 0.00000 2.00000

Z3 =
0.0000000090495
0.0000000067871

The computation of the rigorous lower bounds involves the computation of the smallest eigenvalues Zl(j)= 𝜆min([𝑍𝑗])
for 𝑗 = 1, 2, 3.

28 Chapter 5. Semidefinite Programming

VSDP 2020 manual

Zl = obj.solutions.rigorous_lower_bound.z'

Zl =
0.75000 1.00000 0.00000 0.00000

Y = obj.solutions.rigorous_lower_bound.y

intval Y =
-0.7500
-1.0000

Since all Zl >= 0 it is proven that all matrices 𝑍𝑗 are in the interior of the cone 𝒦 and Y is a rigorous enclosure of a
dual strict feasible (near optimal) solution.
Analogous computations are performed for the rigorous upper bound. Here lower bounds on the smallest eigenvalue of
the primal solution are computed Xl(j) = 𝜆min([𝑋𝑗]) for 𝑗 = 1, 2, 3.

Xl = obj.solutions.rigorous_upper_bound.z'

Xl =
0.0000000090495 0.0000000067871 0.0000000135747 0.0000000029910

The matrix X is a rigorous enclosure of a primal strict feasible (near optimal) solution and can be restored from the
vectorized quantity obj.solutions.rigorous_upper_bound.x as shown for the approximate solution. We
omit the display of the interval matrix X for brevity.
Since allXl are non-negative, strict feasibility for the primal problem is proved. Thus strong duality holds for this example.

clear all

5.2 Second SDP-Example

Now we consider the following example (see [11]):

minimize ⟨𝐶(𝛿), 𝑋⟩
subject to ⟨𝐴1, 𝑋⟩ = 1,

⟨𝐴2, 𝑋⟩ = 𝜀,
⟨𝐴3, 𝑋⟩ = 0,
⟨𝐴4, 𝑋⟩ = 0,
𝑋 ∈ 𝕊3

+,

with Lagrangian dual

maximize 𝑦1 + 𝜀𝑦2
subject to 𝑍(𝛿) ∶= 𝐶(𝛿) − ∑4

𝑖=1 𝐴𝑖𝑦𝑖 ∈ 𝕊3
+,

𝑦 ∈ ℝ4,

where

5.2. Second SDP-Example 29

VSDP 2020 manual

c = @(DELTA) ...
[0; 1/2; 0;
1/2; DELTA; 0;
0; 0; DELTA];

At = {};
At{1} = [0; -1/2; 0;

-1/2; 0; 0;
0; 0; 0];

At{2} = [1; 0; 0;
0; 0; 0;
0; 0; 0];

At{3} = [0; 0; 1;
0; 0; 0;
1; 0; 0];

At{4} = [0; 0; 0;
0; 0; 1;
0; 1; 0];

At = [At{:}];

b = @(EPSILON) [1; EPSILON; 0; 0];

K.s = 3;

The linear constraints of the primal problem form imply

𝑋(𝜀) = ⎛⎜
⎝

𝜀 −1 0
−1 𝑋22 0
0 0 𝑋33

⎞⎟
⎠

∈ 𝕊3
+

iff 𝑋22 ≥ 0, 𝑋33 ≥ 0, and 𝜀𝑋22 − 1 ≥ 0. The conic constraint of the dual form is

𝑍(𝛿) = ⎛⎜
⎝

−𝑦2
1+𝑦1

2 −𝑦3
1+𝑦1

2 𝛿 −𝑦4
−𝑦3 −𝑦4 𝛿

⎞⎟
⎠

∈ 𝕊3
+.

Hence, for
• 𝜀 ≤ 0: the problem is primal infeasible ̂𝑓𝑝 = +∞.

• 𝛿 < 0: the problem is dual infeasible ̂𝑓𝑑 = −∞.

• 𝜀 = 𝛿 = 0: the problem is ill-posed and there is a duality gap with ̂𝑓𝑝 = +∞ and ̂𝑓𝑑 = −1.

• 𝜀 > 0 and 𝛿 > 0: the problem is feasible with ̂𝑓𝑝 = ̂𝑓𝑑 = −1 + 𝛿/𝜀.
To obtain a feasible solution, we set 𝛿 = 10−2 and 𝜀 = 2𝛿. Thus the primal and dual optimal objective function value is

̂𝑓𝑝 = ̂𝑓𝑑 = −0.5 and one can start the computations with VSDP.

DELTA = 1e-4;
EPSILON = 2 * DELTA;

obj = vsdp (At, b(EPSILON), c(DELTA), K);
obj.options.VERBOSE_OUTPUT = false;
obj.solve('sdpt3') ...

.rigorous_lower_bound() ...

.rigorous_upper_bound()

30 Chapter 5. Semidefinite Programming

VSDP 2020 manual

ans =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 6 variables
m = 4 constraints

and cones:

K.s = [3]

obj.solutions.approximate:

Solver 'sdpt3': Normal termination, 0.6 seconds.

c'*x = -4.999999947476755e-01
b'*y = -5.000000065021177e-01

obj.solutions.rigorous_lower_bound:

Normal termination, 0.0 seconds, 0 iterations.

fL = -5.000000065021177e-01

obj.solutions.rigorous_upper_bound:

Solver 'sdpt3': Normal termination, 0.7 seconds, 1 iterations.

fU = -4.999999933708725e-01

Detailed information: 'obj.info()'

Everything works as expected. VSDP computes finite rigorous lower and upper bounds fU and fL. Weak duality, e.g.
̂𝑓𝑝 ≥ ̂𝑓𝑑 and fU >= fL, holds for the approximate and rigorous solutions. The accuracy of rigorous the error bounds

can again be measured by

format shorte
fL = obj.solutions.rigorous_lower_bound.f_objective(1);
fU = obj.solutions.rigorous_upper_bound.f_objective(2);
mu = (fU - fL) / max (1, (abs (fU) + abs(fL)) / 2)

mu = 1.3131e-08

Nevertheless, successful termination reported by an approximate solver gives no guarantee on the quality of the computed
solution. Only fU and fL are reliable results, which are computed by the functions vsdp.rigorous_lower_bound
and vsdp.rigorous_upper_bound, respectively.
To emphasize this, one can apply SeDuMi to the same problem:

obj.options.SOLVER = 'sedumi';
obj.solve() ...

.rigorous_lower_bound () ...

.rigorous_upper_bound ()

5.2. Second SDP-Example 31

VSDP 2020 manual

ans =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 6 variables
m = 4 constraints

and cones:

K.s = [3]

obj.solutions.approximate:

Solver 'sedumi': Normal termination, 0.5 seconds.

c'*x = -4.999990761443555e-01
b'*y = -4.999968121457571e-01

obj.solutions.rigorous_lower_bound:

Solver 'sedumi': Normal termination, 0.5 seconds, 1 iterations.

fL = -5.000035760394096e-01

obj.solutions.rigorous_upper_bound:

Solver 'sedumi': Normal termination, 0.5 seconds, 1 iterations.

fU = -4.999953448740588e-01

Detailed information: 'obj.info()'

SeDuMi terminates without any warning, but the approximate results are poor. Since the approximate primal optimal
objective function value is smaller than the dual one. Weak duality is not satisfied.

f_obj = obj.solutions.approximate.f_objective;

f_obj(1) >= f_obj(2)

ans = 0

As already mentioned, weak duality holds for the rigorous error bounds by VSDP:

fL = obj.solutions.rigorous_lower_bound.f_objective(1);
fU = obj.solutions.rigorous_upper_bound.f_objective(2);

fU >= fL

ans = 1

In general the quality of the rigorous error bounds strongly depends on the computed approximate solution and therefore
on the used approximate conic solver. For example compare the accuracy of SeDuMi below with SDPT3 above:

32 Chapter 5. Semidefinite Programming

VSDP 2020 manual

format short e
acc_mu = (fU - fL) / max(1.0, (abs(fU) + abs(fL)) / 2)

acc_mu = 8.2312e-06

5.2. Second SDP-Example 33

VSDP 2020 manual

34 Chapter 5. Semidefinite Programming

CHAPTER

SIX

A PRIORI BOUNDS

In many practical applications the order of the magnitude of a primal or dual optimal solution is known a priori. This is
the case in many combinatorial optimization problems, or, for instance, in truss topology design where the design variables
such as bar volumes can be roughly bounded. If such bounds are available they can speed up the computation of rigorous
error bounds for the optimal value substantially, see [10].
For linear programming problems the upper bound for the variable 𝑥𝑙 is a vector ̄𝑥 such that 𝑥𝑙 ≤ ̄𝑥. For second-order
cone programming the upper bounds for block variables 𝑥𝑞

𝑖 with 𝑖 = 1, … , 𝑛𝑞 can be entered as a vector of upper bounds
𝜆𝑖 of the largest eigenvalues

𝜆max(𝑥𝑞
𝑖) = (𝑥𝑞

𝑖)1 + ||(𝑥𝑞
𝑖)∶||2.

Similarly, in semidefinite programs upper bounds for the primal variables 𝑋𝑠
𝑗 can be entered as a vector of upper bounds

of the largest eigenvalues 𝜆max(𝑋𝑠
𝑗), 𝑗 = 1, … , 𝑛𝑠. An upper bound ̄𝑦 for the dual optimal solution 𝑦 is a vector which

is elementwise larger than 𝑦. Analogously, for conic programs with free variables the upper bound can be entered as a
vector ̄𝑥 such that |𝑥𝑓 | ≤ ̄𝑥.
As an example, we consider the Second SDP-Example with an upper bound 𝑥𝑢 = 105 for 𝜆max(𝑋).

DELTA = 1e-4;
EPSILON = 2 * DELTA;

c = [0; 1/2; 0;
1/2; DELTA; 0;
0; 0; DELTA];

At = {};
At{1} = [0; -1/2; 0;

-1/2; 0; 0;
0; 0; 0];

At{2} = [1; 0; 0;
0; 0; 0;
0; 0; 0];

At{3} = [0; 0; 1;
0; 0; 0;
1; 0; 0];

At{4} = [0; 0; 0;
0; 0; 1;
0; 1; 0];

At = [At{:}];

b = [1; EPSILON; 0; 0];

K.s = 3;

(continues on next page)

35

VSDP 2020 manual

(continued from previous page)

obj = vsdp (At, b, c, K);
obj.options.VERBOSE_OUTPUT = false;

Now we compute approximate solutions by using vsdp.solve and then rigorous error bounds by using vsdp.
rigorous_lower_bound and vsdp.rigorous_upper_bound:

xu = 1e5;
yu = 1e5 * [1 1 1 1]';

obj.solve('sedumi') ...
.rigorous_lower_bound(xu) ...
.rigorous_upper_bound(yu)

ans =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 6 variables
m = 4 constraints

and cones:

K.s = [3]

obj.solutions.approximate:

Solver 'sedumi': Normal termination, 0.5 seconds.

c'*x = -4.999990761443555e-01
b'*y = -4.999968121457571e-01

obj.solutions.rigorous_lower_bound:

Normal termination, 0.0 seconds, 0 iterations.

fL = -5.000869997554969e-01

obj.solutions.rigorous_upper_bound:

Normal termination, 0.0 seconds, 0 iterations.

fU = -4.997496499568883e-01

Detailed information: 'obj.info()'

yielding rigorous error bounds with reasonable accuracy:

format shorte
fL = obj.solutions.rigorous_lower_bound.f_objective(1);
fU = obj.solutions.rigorous_upper_bound.f_objective(2);
mu = (fU - fL) / max (1, (abs (fU) + abs(fL)) / 2)

36 Chapter 6. A Priori Bounds

VSDP 2020 manual

mu = 3.3735e-04

The advantage of rigorous error bounds computed with a priori bounds on the solution is, that the computational effort
can be neglected.

37

VSDP 2020 manual

38 Chapter 6. A Priori Bounds

CHAPTER

SEVEN

RIGOROUS CERTIFICATES OF INFEASIBILITY

The functions vsdp.rigorous_lower_bound and vsdp.rigorous_upper_bound prove strict fea-
sibility and compute rigorous error bounds. For the verification of infeasibility the functions vsdp.
check_primal_infeasible and vsdp.check_dual_infeasible can be applied. In this section we show
how to use these functions.

7.1 Theorems of alternatives

Both functions are based upon a theorem of alternatives [13]. Such a theorem states that for two systems of equations or
inequalities, one or the other system has a solution, but not both. A solution of one of the systems is called a certificate
of infeasibility for the other which has no solution.
For a conic program those two theorems of alternatives are as follows:

Primal Infeasibility Theorem
Suppose that some ̃𝑦 satisfies −𝐴𝑇 𝑦 ∈ 𝒦∗ and 𝑏𝑇 ̃𝑦 > 0. Then the system of primal constraints 𝐴𝑥 = 𝑏
with 𝑥 ∈ 𝒦 has no solution.
Dual Infeasibility Theorem
Suppose that some ̃𝑥 ∈ 𝒦 satisfies𝐴 ̃𝑥 = 0 and 𝑐𝑇 ̃𝑥 < 0. Then the system of dual constraints 𝑐−𝐴𝑇 𝑦 ∈ 𝒦∗

has no solution.
For a proof, see [13]. The first theorem is the foundation of vsdp.check_primal_infeasible and the second
of vsdp.check_dual_infeasible.

7.2 Example: primal infeasible SOCP

We consider a slightly modified second-order cone problem from [28] (Example 2.4.2)

minimize (0 0 0) 𝑥,
subject to (1 0 0.5

0 1 0) 𝑥 = (0
1) ,

𝑥 ∈ 𝕃3,

with its dual problem

maximize (0 1) 𝑦,

subject to ⎛⎜
⎝

0
0
0
⎞⎟
⎠

− ⎛⎜
⎝

1 0
0 1

0.5 0
⎞⎟
⎠

𝑦 ∈ 𝕃3.

39

VSDP 2020 manual

The primal problem is infeasible, while the dual problem is unbounded. One can easily prove this fact by assuming that
there exists a primal feasible point 𝑥. This point has to satisfy 𝑥3 = −2𝑥1 and therefore 𝑥1 ≥ √𝑥2

2 + (−2𝑥1)2. From
the second equality constraint we get 𝑥2 = 1 yielding the contradiction 𝑥1 ≥ √1 + 4𝑥2

1. Thus, the primal problem has
no feasible solution.
The set of dual feasible points is given by 𝑦1 ≤ 0 and 𝑦2 = −

√
3

2 𝑦1. Thus the maximization of the dual problem yields
̂𝑓𝑝 = +∞ for 𝑦 = 𝛼 (−1

√
3/2)𝑇 with 𝛼 → +∞.

To show primal infeasibility using VSDP, one first has to specify the input data:

A = [1, 0, 0.5;
0, 1, 0];

b = [0; 1];
c = [0; 0; 0];
K.q = 3;

Using the approximate solver SDPT3, we obtain a rigorous certificate of infeasibility with the routine vsdp.
check_primal_infeasible:

obj = vsdp(A,b,c,K).solve ('sdpt3') ...
.check_primal_infeasible () ...
.check_dual_infeasible ();

num. of constraints = 2
dim. of socp var = 3, num. of socp blk = 1

SDPT3: Infeasible path-following algorithms

version predcorr gam expon scale_data

NT 1 0.000 1 0
it pstep dstep pinfeas dinfeas gap prim-obj dual-obj cputime

0|0.000|0.000|1.0e+00|2.1e+00|3.7e+00| 0.000000e+00 0.000000e+00| 0:0:00| chol ␣
↪1 1
1|0.640|1.000|3.6e-01|1.0e-01|3.0e-01| 0.000000e+00 1.979648e+00| 0:0:00| chol ␣
↪1 1
2|0.066|0.638|3.4e-01|4.3e-02|2.4e+00| 0.000000e+00 2.346369e+02| 0:0:00| chol ␣
↪1 1
3|0.004|1.000|3.4e-01|1.0e-03|2.9e+04| 0.000000e+00 2.170266e+06| 0:0:00| chol ␣
↪2 2
4|0.005|1.000|3.4e-01|9.9e-05|2.1e+08| 0.000000e+00 1.165746e+10| 0:0:00| chol ␣
↪2 2
5|0.004|1.000|3.4e-01|0.0e+00|5.3e+11| 0.000000e+00 3.618635e+13| 0:0:00| chol ␣
↪1 1
6|0.002|1.000|3.4e-01|0.0e+00|2.2e+15| 0.000000e+00 1.736991e+17| 0:0:00|
sqlp stop: primal or dual is diverging, 9.1e+16

number of iterations = 6
Total CPU time (secs) = 0.22
CPU time per iteration = 0.04
termination code = 3
DIMACS: 3.4e-01 0.0e+00 0.0e+00 0.0e+00 -1.0e+00 1.3e-02

40 Chapter 7. Rigorous Certificates of Infeasibility

VSDP 2020 manual

The output of the solver is quite verbose and can be suppressed by setting obj.options.VERBOSE_OUTPUT to
false. Important is the message of the SDPT3 solver:

sqlp stop: primal or dual is diverging
which supports the theoretical consideration about the unboundedness of the dual problem. As expected, vsdp.
check_primal_infeasible proves the infeasiblity of the primal problem

obj.solutions.certificate_primal_infeasibility

ans =
Normal termination, 0.0 seconds.

A certificate of primal infeasibility 'y' was found.
The conic problem is primal infeasible.

while dual infeasibility cannot be shown:

obj.solutions.certificate_dual_infeasibility

ans =
Normal termination, 0.0 seconds.

NO certificate of dual infeasibility was found.

The interval quantity y, the rigorous certificate of primal infeasiblity, matches the theoretical considerations. It diverges
to infinite values:

y = obj.solutions.certificate_primal_infeasibility.y

intval y =
1.0e+017 *
-2.0060
1.7369

and the first entry of y multiplied by −
√

3/2 is almost the second entry of y:

y(1) * -sqrt(3)/2

intval ans =
1.0e+017 *

1.7372

The following check is already done by vsdp.check_primal_infeasible, but for illustration we evaluate the
conditions to prove primal infeasibility from the first theorem of alternatives −𝐴𝑇 𝑦 ∈ 𝒦∗ and 𝑏𝑇 ̃𝑦 > 0:

z = -A' * y;
z(1) >= norm (z(2:end)) % Check z to be in the Lorentz-cone.

ans = 1

b' * y > 0

7.2. Example: primal infeasible SOCP 41

VSDP 2020 manual

ans = 1

Note that the rigorous certificate of infeasiblity is not necessarily unique. Thus VSDP might proof a different y, when
used with another approximate solver. Compare for example the certificate computed by SeDuMi:

obj = vsdp(A,b,c,K);
obj.options.VERBOSE_OUTPUT = false;
obj.solve ('sedumi') ...

.check_primal_infeasible ();
y = obj.solutions.certificate_primal_infeasibility.y

intval y =
-2.3924
1.0000

z = -A' * y;
z(1) >= norm (z(2:end)) % Check z to be in the Lorentz-cone.

ans = 1

b' * y > 0

ans = 1

which is also perfectly valid.

7.3 Example: primal infeasible SDP

In the following we consider another conic optimization problem from [10]. The two SDP constraints of that problem
depend on two arbitrary fixed chosen parameters 𝛿 = 0.1 and 𝜀 = −0.01.
\begin{equation} \begin{array}{ll} \text{minimize} & \left\langle \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}, X
\right\rangle \ \text{subject to} & \left\langle \begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}, X \right\rangle = \varepsilon,
\ & \left\langle \begin{pmatrix} 0 & 1 \ 1 & \delta \end{pmatrix}, X \right\rangle = 1, \ & X \in \mathbb{S}_{+}^{2}.
\end{array} \end{equation}
The problem data is entered in the VSDP 2006 format:

clear all;
EPSILON = -0.01;
DELTA = 0.1;
blk(1,:) = {'s'; 2};
C{1,1} = [0 0; 0 0];
A{1,1} = [1 0; 0 0];
A{2,1} = [0 1; 1 DELTA];
b = [EPSILON; 1];

obj = vsdp (blk, A, C, b);
obj.options.VERBOSE_OUTPUT = false;

42 Chapter 7. Rigorous Certificates of Infeasibility

VSDP 2020 manual

The first constraint yields 𝑥1 = 𝜀 < 0. This is a contradiction to 𝑋 ∈ 𝕊2
+, thus the problem is primal infeasible. The

dual problem is

maximize 𝜀𝑦1 + 𝑦2

subject to (0 0
0 0) − 𝑦1 (1 0

0 0) − 𝑦2 (0 1
1 𝛿) = (−𝑦1 −𝑦2

−𝑦2 −𝛿𝑦2
) ∈ 𝕊2

+,
𝑦1, 𝑦2 ∈ ℝ.

For dual feasibility the first principal minor of the dual constraint must fulfill−𝑦1 ≥ 0 and the entirematrix 𝑦2(𝛿𝑦1−𝑦2) ≥
0. The objective function goes to +∞ for 𝑦1 → −∞ and 𝑦2 = 0. Thus the dual problem is unbounded and each point

̂𝑦 = (𝑦1, 0) with 𝑦1 ≤ 0 is a certificate of primal infeasibility.
To compute a rigorous certificate of primal infeasiblity using VSDP, one can make use of the vsdp.
check_primal_infeasible-function:

obj = obj.solve ('sdpt3') ...
.rigorous_upper_bound () ...
.check_primal_infeasible () ...
.check_dual_infeasible ()

warning: rigorous_upper_bound: Conic solver could not find a solution for␣
↪perturbed problem

warning: called from
rigorous_upper_bound>rigorous_upper_bound_infinite_bounds at line 191 column 5
rigorous_upper_bound at line 58 column 7

obj =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 3 variables
m = 2 constraints

and cones:

K.s = [2]

obj.solutions.approximate:

Solver 'sdpt3': Primal infeasible, 0.4 seconds.

c'*x = 0.000000000000000e+00
b'*y = 1.000000000000000e+00

Compute a rigorous lower bound:

'obj = obj.rigorous_lower_bound()'
obj.solutions.rigorous_upper_bound:

Solver 'sdpt3': Unknown, 0.4 seconds, 1 iterations.

fU = Inf

obj.solutions.certificate_primal_infeasibility:

Normal termination, 0.0 seconds.

(continues on next page)

7.3. Example: primal infeasible SDP 43

VSDP 2020 manual

(continued from previous page)

A certificate of primal infeasibility 'y' was found.
The conic problem is primal infeasible.

obj.solutions.certificate_dual_infeasibility:

Normal termination, 0.0 seconds.

NO certificate of dual infeasibility was found.

Detailed information: 'obj.info()'

While computing an approximate solution to this problem, SDPT3 already detects potential primal infeasibility. Trying
to compute a rigorous upper error bound by vsdp.rigorous_upper_bound fails. This emphasizes the warning at
the beginning of the output and the upper error bound is set to infinity (fU = Inf).
Using the approximate dual solution

yt = obj.solutions.approximate.y

yt =
-100.007983163

-0.000079832

the VSDP-function vsdp.check_primal_infeasible tries to prove a rigorous certificate of primal infeasibility.
This is done by a rigorous evaluation of the theorem of alternatives using interval arithmetic:

format infsup
yy = obj.solutions.certificate_primal_infeasibility.y

intval yy =
[-100.0080, -100.0079]
[-0.0001, -0.0000]

According to the Primal Infeasibility Theorem (cf. Theorems of alternatives) ⟨ ̃𝑦, 𝑏⟩ is positive:

obj.b' * yy

intval ans =
[1.0000, 1.0000]

and −𝐴∗ ̃𝑦 lies in the cone of symmetric positive semidefinite matrices 𝕊2
+:

-yy(1) * A{1,1} - yy(2) * A{2,1}

intval ans =
[100.0079, 100.0080] [0.0000, 0.0001]
[0.0000, 0.0001] [0.0000, 0.0001]

44 Chapter 7. Rigorous Certificates of Infeasibility

VSDP 2020 manual

It was shown, that the problem is unbounded, but not infeasible. Therefore it is clear, that VSDP cannot prove a rigorous
certificate of dual infeasiblity by vsdp.check_dual_infeasible:

obj.solutions.certificate_dual_infeasibility

ans =
Normal termination, 0.0 seconds.

NO certificate of dual infeasibility was found.

7.3. Example: primal infeasible SDP 45

VSDP 2020 manual

46 Chapter 7. Rigorous Certificates of Infeasibility

CHAPTER

EIGHT

FREE VARIABLES

Free variables often occur in practice. Handling free variables in interior-point algorithms is a pending issue (see for
example [2, 3, 15, 17]). Frequently problems with free variables are converted into one with restricted variables by
representing the free variables as a difference of two non-negative variables. This approach increases the problem size
and introduces ill-posedness, which may lead to numerical difficulties.
For example we consider the test problem nb_L1 from the DIMACS test library [20]. The problem originates from
side lobe minimization in antenna engineering. This is a second-order cone programming problem with 915 equality
constraints, 793 SOCP blocks each of size 3, and 797 non-negative variables. Moreover, the problem has two free
variables that are described as the difference of four non-negative variables. This problem can be loaded from the test
directory of VSDP.
SDPT3 solves the problem without warnings, although it is ill-posed according to Renegar’s definition (see [21]):

load (fullfile ('..', 'test', 'nb_L1.mat'));
obj = vsdp (A, b, c, K);
obj.options.VERBOSE_OUTPUT = false;
obj.solve('sdpt3') ...

.rigorous_lower_bound () ...

.rigorous_upper_bound ()

warning: rigorous_lower_bound: Conic solver could not find a solution for␣
↪perturbed problem

warning: called from
rigorous_lower_bound at line 174 column 5

ans =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 3176 variables
m = 915 constraints

and cones:

K.l = 797
K.q = [793 cones (length = 2379)]

obj.solutions.approximate:

Solver 'sdpt3': Normal termination, 10.6 seconds.

c'*x = -1.301227063328808e+01
b'*y = -1.301227079584390e+01

(continues on next page)

47

VSDP 2020 manual

(continued from previous page)

obj.solutions.rigorous_lower_bound:

Solver 'sdpt3': Unknown, 12.9 seconds, 1 iterations.

fL = -Inf

obj.solutions.rigorous_upper_bound:

Solver 'sdpt3': Normal termination, 32.7 seconds, 2 iterations.

fU = -1.301227062881248e+01

The rigorous lower bound is infinite, check dual infeasibility:

'obj = obj.check_dual_infeasible()'

Detailed information: 'obj.info()'

These results reflect that the interior of the dual feasible solution set is empty. An ill-posed problem has the property
that the distance to primal or dual infeasibility is zero. As above, if the distance to dual infeasibility is zero, then there
are sequences of dual infeasible problems with input data converging to the input data of the original problem. Each
problem of the sequence is dual infeasible and thus has the dual optimal solution −∞. Hence, the result −∞ of vsdp.
rigorous_lower_bound is exactly the limit of the optimal values of the dual infeasible problems and reflects the
fact that the distance to dual infeasibility is zero. This demonstrates that the infinite bound computed by VSDP is sharp,
when viewed as the limit of a sequence of infeasible problems. We have a similar situation if the distance to primal
infeasibility is zero.
If the free variables are not converted into restricted ones, then the problem is well-posed and a rigorous finite lower
bound can be computed:

load (fullfile ('..', 'test', 'nb_L1free.mat'));
obj = vsdp (A, b, c, K);
obj.options.VERBOSE_OUTPUT = false;
obj.solve('sdpt3') ...

.rigorous_lower_bound () ...

.rigorous_upper_bound ()

ans =
VSDP conic programming problem with dimensions:

[n,m] = size(obj.At)
n = 3174 variables
m = 915 constraints

and cones:

K.f = 2
K.l = 793
K.q = [793 cones (length = 2379)]

obj.solutions.approximate:

(continues on next page)

48 Chapter 8. Free Variables

VSDP 2020 manual

(continued from previous page)

Solver 'sdpt3': Normal termination, 11.1 seconds.

c'*x = -1.301227062100383e+01
b'*y = -1.301227081903705e+01

obj.solutions.rigorous_lower_bound:

Solver 'sdpt3': Normal termination, 14.9 seconds, 1 iterations.

fL = -1.301227081922505e+01

obj.solutions.rigorous_upper_bound:

Normal termination, 2.7 seconds, 0 iterations.

fU = -1.301227062000819e+01

Detailed information: 'obj.info()'

Therefore, without splitting the free variables, we get rigorous finite lower and upper bounds of the exact optimal value
with an accuracy of about eight decimal digits. Moreover, verified interior solutions are computed for both the primal
and the dual problem, proving strong duality.

49

VSDP 2020 manual

50 Chapter 8. Free Variables

Part II

Back matter

51

CHAPTER

NINE

NUMERICAL RESULTS

In this section, we present statistics for the numerical results obtained byVSDP for conic programming problems. The tests
were performed using approximations computed by the conic solvers: CSDP, MOSEK, SDPA, SDPT3, and SeDuMi.
For second-order cone programming problems only MOSEK, SDPT3, and SeDuMi were used. The solvers have been
called with their default parameters. Almost all of the problems that could not be solved with a guaranteed accuracy of
about 10−7 are known to be ill-posed (cf. [19]).
In particular, the results were obtained by using the following two systems:

• System 1
– GNU Octave (4.4.1)
– CPU: Intel(R) Xeon(R) E3-1220 (4 cores)
– RAM: 12 GB
– OS: Linux (openSUSE 15.0)
– Interval arithmetic: INTLAB 11
– Conic Solver: CSDP (6.2.0), SDPA (7.3.8), SDPT3 (4.0), SeDuMi (1.32)

• System 2
– MATLAB(R) (R2018b)
– CPU: Intel(R) Xeon(R) E5-2640v3 (8 cores)
– RAM: 128 GB
– OS: Linux (Ubuntu 18.04)
– Interval arithmetic: INTLAB 11
– Conic Solver: MOSEK (8.1.0.62), SDPT3 (4.0)

The relative accuracy of two numbers is measured by $𝜇(𝑎, 𝑏) ∶= 𝑎 − 𝑏
max{1.0, (|𝑎| + |𝑏|)/2} .$

Notice that we do not use the absolute value of 𝑎 − 𝑏. Hence, a negative sign implies that 𝑎 < 𝑏.

53

VSDP 2020 manual

9.1 SDPLIB

In the following, we describe the numerical results for 92 problems from the SDPLIB suite of Borchers [5]. In [8] it is
shown that four problems are infeasible and 32 problems are ill-posed.
VSDP could compute rigorous bounds of the optimal values for all feasible well-posed problems and verify the existence
of strictly primal and dual feasible solutions. Hence, strong duality is proved. For the 32 ill-posed problems VSDP has
computed the upper bound 𝑓𝑑 = Inf, which reflects the fact that the distance to the next primal infeasible problem is zero.
For the four infeasible problems VSDP could compute rigorous certificates of infeasibility. Detailed numerical results can
be found in the tables for System 1 and System 2, where the computed rigorous upper bound 𝑓𝑑, the rigorous lower bound
𝑓𝑝, and the rigorous error bound 𝜇(𝑓𝑑, 𝑓𝑝) are displayed. We have set 𝜇(𝑓𝑑, 𝑓𝑝) = NaN if the upper or the lower bound
is infinite. Both tables also contain running times in seconds, where 𝑡𝑠 is the time for computing the approximations and
𝑡 and 𝑡 are the times for computing the upper and the lower rigorous error bounds, respectively.
Some major characteristics the numerical results for the SDPLIB are summarized by the following figures.

Figure 1: Relative accuracies 𝜇(𝑓𝑑, 𝑓𝑝). Only results for which both rigorous error bounds were computed
are taken into account. With the exception of SDPA, all approximate conic solvers can compute rigorous
error bounds with 7 or 8 significant decimal digits.

54 Chapter 9. Numerical Results

https://vsdp.github.io/benchmark/2018_12/SDPLIB_SYS1.html
https://vsdp.github.io/benchmark/2018_12/SDPLIB_SYS2.html

VSDP 2020 manual

Figure 2: Computation times for 𝑡 relative to 𝑡𝑠.

Figure 3: Computation times for 𝑡 relative to 𝑡𝑠.
Furthermore, the figures show, that the error bounds as well as the time ratios depend significantly on the used conic
solver. Even the largest problem MaxG60 with about 24 million variables and 7000 constraints can be solved rigorously
by VSDP with high accuracy and in a reasonable time.

9.1. SDPLIB 55

VSDP 2020 manual

9.2 SPARSE_SDP

In this section a statistic of the numerical results for problems from structural and topological optimization is presented.
Structural and especially freematerial optimization gainedmore andmore interest in the recent years. Themost prominent
example is the design of ribs in the leading edge of the Airbus A380. We performed tests on problems from the test
library collected by Kočvara. This is a collection of 26 sparse semidefinite programming problems. More details on these
problems can be found in [16, 26, 27]. For 22 problems out of this collection VSDP could compute a rigorous primal and
dual 𝜀-optimal solution, using SeDuMi as approximate solver. The largest problem that was rigorously solved by VSDP
is shmup5. This problem has 1800 equality constraints and 13 million variables.
Detailed results can be found in the tables for System 1 and System 2. A statistic of these numerical experiments is given
in the following figures.

Figure 4: Relative accuracies 𝜇(𝑓𝑑, 𝑓𝑝). Only results for which both rigorous error bounds were computed
are taken into account.

56 Chapter 9. Numerical Results

https://vsdp.github.io/benchmark/2018_12/SPARSE_SDP_SYS1.html
https://vsdp.github.io/benchmark/2018_12/SPARSE_SDP_SYS2.html

VSDP 2020 manual

Figure 5: Computation times for 𝑡 relative to 𝑡𝑠.

Figure 6: Computation times for 𝑡 relative to 𝑡𝑠.

9.2. SPARSE_SDP 57

VSDP 2020 manual

9.3 DIMACS

We present some statistics of numerical results for the DIMACS test library of semidefinte-quadratic-linear programs.
This library was assembled for the purposes of the 7-th DIMACS Implementation Challenge. There are 47 challenging
problems that are divided into 12 groups. For details see [20]. In each group there are about five instances, from routinely
solvable ones to those at or beyond the capabilities of current solvers. Due to the large problem sizes this test library was
only run on System 2 using MOSEK and the problem fap25 had to be omitted in our test.
One of the largest problems which could be solved by VSDP is the problem torusg3-15, with 3375 equality constraints
and about 5 million variables.
Detailed results can be found in the table for System 2. A statistic of these numerical experiments is given in the following
figures.

Figure 7: Relative accuracies 𝜇(𝑓𝑑, 𝑓𝑝). Only results for which both rigorous error bounds were computed
are taken into account.

58 Chapter 9. Numerical Results

https://vsdp.github.io/benchmark/2018_12/DIMACS_SYS2.html

VSDP 2020 manual

Figure 8: Computation times for 𝑡 relative to 𝑡𝑠.

Figure 9: Computation times for 𝑡 relative to 𝑡𝑠.

9.3. DIMACS 59

VSDP 2020 manual

9.4 ESC

The ESC library contains 47 semidefinite programs from electronic structure calculations in quantum chemistry. In
particular, the semidefinite programs are a relaxation of a variational approach for computing the ground state energy
of 𝑁 -electron molecules. For more details see [25]. The size of the resulting problems ranges between 100,000 and 2
million variables, and between 948 and 7230 constraints.
Approximate solutions and rigorous bounds were obtained for all problem instances, with the exception of the test problem
CF, where the problem data is inconsistent.
Detailed results can be found in the table for System 2. All energy values are given in Hartree units and are the negative
computed values plus the nuclear repulsion energy, see [25] for details.
In the table, the rigorous upper and lower error bounds of the optimal value are denoted by 𝐸, 𝐸, and 𝐸2, respectively.
The value 𝐸2 is the rigorous lower energy error bound calculated by using our a priori eigenvalue bounds as derived in
[6]. The quantities ̃𝑡, 𝑡, 𝑡, and 𝑡2 denote the running times in seconds for 𝐸𝑝 and 𝐸𝑑, 𝐸, 𝐸, and 𝐸2, respectively.
A statistic of these numerical experiments is given in the following figures.

Figure 10: Relative accuracies 𝜇(𝑓𝑑, 𝑓𝑝). Only results for which both rigorous error bounds were computed
are taken into account.

60 Chapter 9. Numerical Results

https://vsdp.github.io/benchmark/2018_12/ESC_SYS2.html

VSDP 2020 manual

Figure 11: Computation times for 𝑡 relative to 𝑡𝑠.

Figure 12: Computation times for 𝑡 relative to 𝑡𝑠.

9.4. ESC 61

VSDP 2020 manual

9.5 RDM

The RDM library [18] contains eight additional and larger problem instances, compared to the ESC benchmark library.
The size of the resulting semidefinite problems ranges between 2 million and 19 million variables, and between 7230 and
27888 constraints.
Using the same notation as for the ESC table, the detailed results can be found for System 2.

62 Chapter 9. Numerical Results

https://vsdp.github.io/benchmark/2018_12/RDM_SYS2.html

CHAPTER

TEN

CONIC SOLVERS

In this section we provide some notes about our usage experience with VSDP and the following approximate conic solvers.
For our tests we tried the following four combinations to run the conic solver:

+---------------------------+
| <conic solver> |
+---------------------------+
| VSDP & INTLAB |
+------------+--------------+
| MATLAB | GNU Octave |
+------------+--------------+

10.1 CSDP

• Website: https://github.com/coin-or/Csdp
• Documentation: https://github.com/coin-or/Csdp/blob/master/doc/csdpuser.pdf
• Cones: (Free variables), LP, SDP
• Installation: Binary distributions for Windows and Linux on the website. Extract binary distribution to arbitrary
location and useaddpathwithin Octave orMATLAB to add thebin (solver executables) andmatlab (interface
routines) subdirectories.

• Invocation: Call csdp from the Octave or MATLAB command prompt.
• Notes: Free variables are only supported as difference of LP variables. The resulting problem is ill-posed.

10.2 GLPK

• Website: https://www.gnu.org/software/glpk
• Documentation: Part of the source code archive available from the website.
• Cones: Free variables, LP
• Installation: Built-in solver of GNU Octave.
• Invocation: Call glpk from the Octave command prompt.
• Notes: Not available for MATLAB.

63

https://github.com/coin-or/Csdp
https://github.com/coin-or/Csdp/blob/master/doc/csdpuser.pdf
https://www.gnu.org/software/glpk

VSDP 2020 manual

10.3 LINPROG

• Website: https://www.mathworks.com/help/optim/ug/linprog.html
• Documentation: See website.
• Cones: Free variables, LP
• Installation: Built-in solver of MATLAB.
• Invocation: Call linprog from the MATLAB command prompt.
• Notes: Not available for GNU Octave.

10.4 lp_solve

• Website: http://lpsolve.sourceforge.net/5.5/index.htm
• Documentation: See website.
• Cones: Free variables, LP
• Installation: Binary distributions for Windows and Linux are available from https://sourceforge.net/projects/
lpsolve/files/lpsolve/5.5.2.5. For Linux it is easier to install the binary solver files from the respective distribution
package manager. The Octave andMATLAB interface is available from https://github.com/vsdp/lp_solve or https:
//sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.5. Inside the extra/octave/lpsolve or extra/
matlab/lpsolve subdirectory one has to follow the build instructions and has to use addpath within Octave
or MATLAB to make it work.

• Invocation: Call lp_solve from the Octave or MATLAB command prompt.

10.5 MOSEK

• Website: https://www.mosek.com/
• Documentation: https://www.mosek.com/documentation/
• Cones: Free variables, LP, SOCP, SDP
• Installation: Binary distributions for Windows and Linux on the website. Very good description is given at https:
//docs.mosek.com/8.1/install/installation.html

• Invocation: Call mosekopt from the Octave or MATLAB command prompt.
• Notes: One has to obtain a license, which is gratis for personal and academic use. No Octave. There is some no
longer maintained octmosek Octave package, that does notes work for recent Octave versions.

64 Chapter 10. Conic solvers

https://www.mathworks.com/help/optim/ug/linprog.html
http://lpsolve.sourceforge.net/5.5/index.htm
https://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.5
https://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.5
https://github.com/vsdp/lp_solve
https://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.5
https://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.5
https://www.mosek.com/
https://www.mosek.com/documentation/
https://docs.mosek.com/8.1/install/installation.html
https://docs.mosek.com/8.1/install/installation.html
https://github.com/MOSEK/octmosek

VSDP 2020 manual

10.6 SDPA

• Website: http://sdpa.sourceforge.net
• GitHub: https://github.com/vsdp/sdpa
• Documentation: https://sourceforge.net/projects/sdpa/files/sdpa/sdpa.7.1.1.manual.20080618.pdf
• Cones: LP, SDP
• Installation (Windows): Binary distributions can be obtained from http://sdpa.sourceforge.net/download.html (use
the SDPA-M version). Extract binary distribution to arbitrary location and use addpath within MATLAB to add
the solver and interface routines.

• Invocation: Call mexsdpa from the Octave or MATLAB command prompt.
• Notes: The “native” installation for Windows and MATLAB is the most reliable. The other three combinations
worked partially or not at all. Some of the Linux efforts are reflected in the GitHub repository.

10.7 SDPT3

• Website: https://blog.nus.edu.sg/mattohkc/softwares/sdpt3/
• GitHub: https://github.com/sqlp/sdpt3 (preferred) or https://github.com/Kim-ChuanToh/SDPT3
• Documentation: https://blog.nus.edu.sg/mattohkc/files/2019/10/guide4-0-draft.pdf
• Cones: Free variables, LP, SOCP, SDP
• Installation: Download the files from the preferred GitHub repository extracted to an arbitrary location and run
install_sdpt3 from the Octave or MATLAB command prompt.

• Invocation: Call sqlp from the Octave or MATLAB command prompt.
• Notes: In case of errors with the MEX-Interface, run install_sdpt3 -rebuild from the Octave or MAT-
LAB command prompt. The SDPT3 function randmat is in conflict with the INTLAB function randmat. To
resolve that conflict, we chose to rename the INTLAB function.

10.8 SeDuMi

• Website: http://sedumi.ie.lehigh.edu
• GitHub: https://github.com/sqlp/sedumi (preferred)
• Documentation: http://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_Guide_11.pdf and http://
sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/usrguide.ps

• Cones: Free variables, LP, SOCP, SDP
• Installation: Download the files from the preferred GitHub repository extracted to an arbitrary location and run
install_sedumi from the Octave or MATLAB command prompt.

• Invocation: Call sedumi from the Octave or MATLAB command prompt.
• Notes: In case of errors with the MEX-Interface, run install_sedumi -rebuild from the Octave or
MATLAB command prompt.

10.6. SDPA 65

http://sdpa.sourceforge.net
https://github.com/vsdp/sdpa
https://sourceforge.net/projects/sdpa/files/sdpa/sdpa.7.1.1.manual.20080618.pdf
http://sdpa.sourceforge.net/download.html
https://blog.nus.edu.sg/mattohkc/softwares/sdpt3/
https://github.com/sqlp/sdpt3
https://github.com/Kim-ChuanToh/SDPT3
https://blog.nus.edu.sg/mattohkc/files/2019/10/guide4-0-draft.pdf
http://sedumi.ie.lehigh.edu
https://github.com/sqlp/sedumi
http://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_Guide_11.pdf
http://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/usrguide.ps
http://sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/usrguide.ps

VSDP 2020 manual

66 Chapter 10. Conic solvers

BIBLIOGRAPHY

[1] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming, 95(1):3–51, 2003.
doi:10.1007/s10107-002-0339-5.

[2] E. D. Andersen. Handling free variables in primal-dual interior-point methods using a quadratic cone. 2002. URL:
https://meetings.siam.org/sess/dsp_talk.cfm?p=3815.

[3] M. Anjos and S. Burer. On Handling Free Variables in Interior-Point Methods for Conic Linear Optimization. SIAM
Journal on Optimization, 18(4):1310–1325, 2007. doi:10.1137/06066847X.

[4] B. Borchers. CSDP 6.2.0 User's Guide. 2017. URL: https://github.com/coin-or/Csdp/blob/master/doc/csdpuser.
pdf.

[5] Brian Borchers. CSDP 2.3 user's guide. Optimization Methods and Software, 11(1-4):597–611, 1999.
doi:10.1080/10556789908805764.

[6] D. Chaykin, C. Jansson, F. Keil, M. Lange, K. T. Ohlhus, and S. M. Rump. Rigorous results in electronic structure
calculations. 2016. URL: http://www.optimization-online.org/DB_HTML/2016/11/5730.html.

[7] L. El Ghaoui and H. Lebret. Robust Solutions to Least-Squares Problems with Uncertain Data. SIAM Journal on
Matrix Analysis and Applications, 18(4):1035–1064, 1997. doi:10.1137/S0895479896298130.

[8] Robert M. Freund, Fernando Ordóñez, and Kim-Chuan Toh. Behavioral measures and their correlation with
IPM iteration counts on semi-definite programming problems.Mathematical Programming, 109(2):445–475, 2007.
doi:10.1007/s10107-006-0035-y.

[9] V. Härter, C. Jansson, and M. Lange. VSDP: A Matlab toolbox for verified semidefinite-quadratic-linear program-
ming. 2012. URL: http://www.optimization-online.org/DB_HTML/2013/01/3724.html.

[10] C. Jansson. VSDP: Verified SemiDefinite Programming. 2006. URL: http://www.optimization-online.org/DB_
HTML/2006/12/1547.html.

[11] C. Jansson, D. Chaykin, and C. Keil. Rigorous Error Bounds for the Optimal Value in Semidefinite Programming.
SIAM Journal on Numerical Analysis, 46(1):180–200, 2007. doi:10.1137/050622870.

[12] Christian Jansson. A Rigorous Lower Bound for the Optimal Value of Convex Optimization Problems. Journal of
Global Optimization, 28(1):121–137, 2004. doi:10.1023/B:JOGO.0000006720.68398.8c.

[13] Christian Jansson. Guaranteed Accuracy for Conic Programming Problems in Vector Lattices. arXiv:0707.4366
[math], 2007. arXiv:0707.4366.

[14] Christian Jansson. On verified numerical computations in convex programming. Japan Journal of Industrial and
Applied Mathematics, 26(2):337–363, 2009. doi:10.1007/BF03186539.

[15] Kazuhiro Kobayashi, Kazuhide Nakata, and Masakazu Kojima. A conversion of an SDP having free variables into
the standard form SDP. Computational Optimization and Applications, 36(2):289–307, 2007. doi:10.1007/s10589-
006-9002-z.

67

https://doi.org/10.1007/s10107-002-0339-5
https://meetings.siam.org/sess/dsp_talk.cfm?p=3815
https://doi.org/10.1137/06066847X
https://github.com/coin-or/Csdp/blob/master/doc/csdpuser.pdf
https://github.com/coin-or/Csdp/blob/master/doc/csdpuser.pdf
https://doi.org/10.1080/10556789908805764
http://www.optimization-online.org/DB_HTML/2016/11/5730.html
https://doi.org/10.1137/S0895479896298130
https://doi.org/10.1007/s10107-006-0035-y
http://www.optimization-online.org/DB_HTML/2013/01/3724.html
http://www.optimization-online.org/DB_HTML/2006/12/1547.html
http://www.optimization-online.org/DB_HTML/2006/12/1547.html
https://doi.org/10.1137/050622870
https://doi.org/10.1023/B:JOGO.0000006720.68398.8c
https://arxiv.org/abs/0707.4366
https://doi.org/10.1007/BF03186539
https://doi.org/10.1007/s10589-006-9002-z
https://doi.org/10.1007/s10589-006-9002-z

VSDP 2020 manual

[16] M. Kočvara. On the modelling and solving of the truss design problem with global stability constraints. Structural
and Multidisciplinary Optimization, 23(3):189–203, 2002. doi:10.1007/s00158-002-0177-3.

[17] Csaba Mészáros. On free variables in interior point methods. Optimization Methods and Software, 9(1-3):121–139,
1998. doi:10.1080/10556789808805689.

[18] Maho Nakata, Bastiaan J. Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita,
and Zhengji Zhao. Variational calculation of second-order reduced density matrices by strong N-representability
conditions and an accurate semidefinite programming solver. The Journal of Chemical Physics, 128(16):164113,
2008. doi:10.1063/1.2911696.

[19] F. Ordóñez and R. Freund. Computational Experience and the Explanatory Value of Condition Measures for Linear
Optimization. SIAM Journal on Optimization, 14(2):307–333, 2003. doi:10.1137/S1052623402401804.

[20] G. Pataki and S. H. Schmieta. The DIMACS library of mixed semidefinite-quadratic-linear programs. Techreport,
Columbia University, 2002. URL: http://dimacs.rutgers.edu/archive/Challenges/Seventh/.

[21] James Renegar. Some perturbation theory for linear programming.Mathematical Programming, 65(1):73–91, 1994.
doi:10.1007/BF01581690.

[22] Siegfried M. Rump. INTLAB — INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Com-
puting, pages 77–104. Springer Netherlands, 1999. doi:10.1007/978-94-017-1247-7_7.

[23] Siegfried M. Rump. Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica, 19:287–
449, 2010. doi:10.1017/S096249291000005X.

[24] L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAMReview, 38(1):49–95, 1996. doi:10.1137/1038003.
[25] Zhengji Zhao, Bastiaan J. Braams, Mituhiro Fukuda, Michael L. Overton, and Jerome K. Percus. The reduced

density matrix method for electronic structure calculations and the role of three-index representability conditions.
The Journal of Chemical Physics, 120(5):2095–2104, 2004. doi:10.1063/1.1636721.

[26] Jochem Zowe, Michal Kočvara, andMartin P. Bendsøe. Free material optimization via mathematical programming.
Mathematical Programming, 79(1):445–466, 1997. doi:10.1007/BF02614328.

[27] A. Ben-Tal, M. Kovara, A. Nemirovski, and J. Zowe. Free Material Design via Semidefinite Programming: The
Multiload Case with Contact Conditions. SIAM Review, 42(4):695–715, 2000. doi:10.1137/S0036144500372081.

[28] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. MOS-SIAM Series on Optimization.
Society for Industrial and Applied Mathematics, 2001. ISBN 978-0-89871-491-3. doi:10.1137/1.9780898718829.

68 Bibliography

https://doi.org/10.1007/s00158-002-0177-3
https://doi.org/10.1080/10556789808805689
https://doi.org/10.1063/1.2911696
https://doi.org/10.1137/S1052623402401804
http://dimacs.rutgers.edu/archive/Challenges/Seventh/
https://doi.org/10.1007/BF01581690
https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1017/S096249291000005X
https://doi.org/10.1137/1038003
https://doi.org/10.1063/1.1636721
https://doi.org/10.1007/BF02614328
https://doi.org/10.1137/S0036144500372081
https://doi.org/10.1137/1.9780898718829

	I Manual
	Installation
	Requirements
	Obtaining VSDP
	ZIP-File
	Using git

	Installing VSDP

	Conic Programming
	Primal and dual form
	Condensed form
	Interval arithmetic

	Linear Programming
	First example
	Second example with free variables

	Second-order Cone Programming
	Semidefinite Programming
	First SDP-Example
	Second SDP-Example

	A Priori Bounds
	Rigorous Certificates of Infeasibility
	Theorems of alternatives
	Example: primal infeasible SOCP
	Example: primal infeasible SDP

	Free Variables

	II Back matter
	Numerical Results
	SDPLIB
	SPARSE_SDP
	DIMACS
	ESC
	RDM

	Conic solvers
	CSDP
	GLPK
	LINPROG
	lp_solve
	MOSEK
	SDPA
	SDPT3
	SeDuMi

	Bibliography

